Network Services

Dr. Manfred Hauswirth

Laboratoire de Systèmes d'Information Répartis École Polytechnique Fédérale de Lausanne (EPFL) http://lsirpeople.epfl.ch/hauswirth/

Oct 25, 2002 - Lecture 5

Overview

- Information system architectures
- Scalable Data Access Structures (SDAS)
- More Peer-to-peer systems: P-Grid
 - Searching
 - Building up a P-Grid
 - Request load balancing
 - Trust
 - Semantic gossiping
- Security
 - Certificates, Public Key Infrastructures (PKIs)
 - Firewalls, copyright, data protection, privacy
 - SSL, PGP
- E-Commerce: Macropayment vs. micropayment, SET, Millicent
- Push systems (if time is available)
 - Concepts, components, communication model

© 2002, Manfred Hauswirth Network Services - Oct 25, 2002 - Lecture 5

Centralized Information Systems

- Web search engine
 - Global scale application
- Example: Google

Find

- 150 Mio searches/day
- 1-2 Terabytes of data (April 2001)

"manfred hauswirth"

Result: homepage of

Manfred Hauswirth...

© 2002, Manfred Hauswirth

Google Assessment

- Strenaths
 - Global ranking
 - Fast response time
- Weaknesses
 - Infrastructure, administration, cost
 - A new company for every global application ?

(Semi-)Decentralized Information Systems

Lessons Learned from Napster

• Strengths

- global information system without huge investment
 - exploit unused resources at nodes (space)
 - exploit users knowledge at nodes (annotation, e.g., annotate music files)
- decentralization of cost and administration
- set up a very large scale information system without heavy investment (as e.g., Google)
- keeping content where it is created
- Weaknesses

ICOLI P

- business model: copyrighted material
- server is single point of failure
- therefore it can, for example, be shut down

Pf(© 2002, Manfred Hauswirth	Network Services - Oct 25, 2002 - Lecture 5	
DF LAUSANNE			

Napster vs. Gnutella

		Napster	Gnutella
Resources	search	central	decentral
Resources	file exchange	decentral	decentral
Knowledge	schema	central	trivial
KIIOWIEUge	annotation	decentral	decentral
	2	Partially	

decentralized

Self-Organizing

Decentralization – Self-Organization

Decentralization

- strategy to avoid performance bottlenecks (scalability), single points of failure, points for legal attack
- no central coordination, no central database, no peer has a global view of the system
- Self-organization
 - global behavior emerges from local interactions
 - cooperation/coordination without central control
 - Decisions based on local (or missing) information (autonomy or non-determinism)
- P2P: Towards symmetric system architectures with some desired (or observed) global behavior

Data Access Structures

- Given: a search request (e.g., a name)
- Find all data objects that correspond to this request quickly (e.g., having the name)
- Sequential search does not scale
 - N objects: N steps
- Sequential search does not scale

© 2002, Manfred Hauswirth

Self-Organization and Efficiency

- Self-organization
 - Can be costly if done wrong
- Example: Search Efficiency in Gnutella
 - Search requests are broadcasted
 - Anectode: the founder of Napster computed that a single Gnutella search request (18 Bytes) on a Napster community would generate 90 Mbytes of data transfers

© 2002, Manfred Hauswirth

Network Services - Oct 25, 2002 - Lecture 5

10

Data Access Structures

Tree-based Data Search

- For N data objects
 - Sequential search requires on average N/2 steps
 - Tree search requires log₂(N) steps

data objects	sequential	tree
1.000	500	10
1.000.000	500.000	20
1.000.000.000	500.000.000	30

Scalable Data Access Structures - 1

- Assume number of data objects >> storage of one node
 - Distributed storage
- Given a data access structure
 - Size of data access structure = number of data objects
 - Therefore: Size of data access structure >> storage of one node
- Problem: where to store ?

(Pf © 2002, Manfred Hauswirth © 2002, Manfred Hauswirth Network Services - Oct 25, 2002 - Lecture 5 13 Network Services - Oct 25, 2002 - Lecture 5 Scalable Data Access Structures - 2 Scalable Data Access Structures - 3 • Associate each peer with a complete path "Napster" bottleneck 10? 110 000 001 010 011 100 101 011 100 101 110 111 000 010 001 © 2002, Manfred Hauswirth Network Services - Oct 25, 2002 - Lecture 5 15 © 2002, Manfred Hauswirth Network Services - Oct 25, 2002 - Lecture 5

111

Scalable Data Access Structures - 4

P-Grid Queries

Result: P-Grid

SDAS Discussion

- Scalable Data Access Structures
 - Require only Log₂(N) storage at one node
 - Support Log₂(N) search
 - Are therefore scalable in N (beyond $N=10^{10}$ as in Google)
- Idea found in
 - OceanStore
 - DNS
 - Parallel and distributed DBMS

Construction of SDAS?

- Standard methods
 - Each node has an identifier, compute position in the tree from the identifier
 - Structure of tree depends on distribution of identifier.
 What's the connection ?
 - Nodes can no more choose which data they want to store and which requests they want to answer (autonomy)
 - Each node asks a coordinator for its position in the tree
 - Coordinator is the bottleneck

P-Grid Construction

• Idea

- Replace the coordinator by a random process
- P-Grid construction algorithm
- distributed, decentralized, randomized

when two peers meet

if a maximal path length is not reached

try to extend "their" path in tree

do the necessary bookkeeping

• Requires some care in order to work efficiently

Random Meetings

Efficiency of P-Grid Construction

• Constructing a tree of depth 6 (64 leaves)

Replication?

Non-uniform Data Distribution

 Construct a tree of depth 2 for the following data: 10, 01, 001, 0001, 00001, 000001, 000000

Result

... and still converges quickly

P-Grid Construction Balancing Storage Load

- It makes no sense to create leaves in the tree for data occuring rarely
- Every peer stores initially some data

when two peers meet

peer extends path only if #data items > &

do the necessary bookkeeping

otherwise data exchange (duplicate generation)

• Requires some care in order to work efficiently and to correctly balance the storage load

© 2002, Manfred Hauswirth Network Se

wirth Network Services - Oct 25, 2002 - Lecture 5

Unbalanced Search Trees

• Problem:

tree will be deeper where more data items \Rightarrow more work for answering search request

39

Analysing Required Messages

- Assume only the number of messages required for a search is relevant
 - Multiple nodes in the tree can be traversed without sending a message

Theorem

IF the probability for a reference to another node occuring in the reference lists is equal for all references that possibly can occur,

THEN the number of messages required for a search is $O(\log_2(N))$ no matter what shape the P-Grid (tree) is.

• Equal probability can be achieved by systematically merging the reference lists

	© 2002, Manfred Hauswirth	Network Services - Oct 25, 2002 - Lecture 5
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE		

Request Load Balancing – 2

- Gamma: popularity threshold
 - if access measure > gamma a new popularity level is granted
- Optimum: 0.2 (< 0.2: too much competition)

Figure 5: Average Response Time, Finite Capacity

43

41

Request Load Balancing – 1

Self-Organization in P-Grid

- Nodes decide through local agreement
 - on their position in the search tree when they meet
 - whether to deepen a search tree based on storage load
- Nodes balance data through local operations
 - Reference distribution
 - required for search efficiency
 - Replica distribution of data objects
 - required for search reliability
- Global "agreements" are only on
 - Type of search requests
 - P-Grid organisation

Practical Aspects of P-Grid

- Implementation exists: feasible [IEEE Internet Computing 2002]
- Analysis shows that indexing overhead is reasonable for typical setting [Coopis 2001]
- Algorithms for additional replication of more frequently requested data objects [ICME 2002]
- Update mechanism based on gossiping
 [EPFL-TR 2002]
- Identification and management of dynamic addresses $_{[\text{EPFL-TR 2002}]}$
- Application for storing reputation data [CIKM 2001]
- More complex queries can be supported (regular expressions, paths, joins)

(PA)	© 2002, Manfred Hauswirth	Network Services
ERALE DE LAUSANNE		

© 2002, Manfred Hauswirth

tco

Using P-Grid to store Trust Data

Network Services - Oct 25, 2002 - Lecture 5

Oct 25, 2002 - Lecture 5

Trust Management based on Reputation

• Approach

- Record complaints by peers
- Build a decentralized data warehouse based on P-Grid
- Compute average number of complaints
- Retrieve from the data warehouse all complaints on (and by) a peer
- Also assess the trustworthiness of the peers reporting theses numbers
- Apply a weighting formula and decide
- Result
 - Even with a large fraction of cheaters (25% are cheating 25% of the time) they can be reliably recognized

45

47

Network Services - Oct 25, 2002 - Lecture 5

46

Updates in P-Grid

- Most P2P systems consider data to be read-only
- The goal is not to achieve complete consistency but rather to know what is the probability of a correct answer given certain model parameters
- Scenarios:
 - A query occurs during an update
 - A peer is online while an update is processed
 - A peer is offline while an update is processed
 - A peer crashes or fails
 - The communication with a peer is temporarily disrupted

^{© 2002,} Manfred Hauswirth

Types of Updates in P-Grid

- New peer joins P-Grid: all the peer's data must be communicated to the responsible peers and their replicas
- New data item is inserted
- Existing data item is updated
- Due to a re-organisation in the P-Grid a new peer becomes responsible for a certain data item
- Management of dynamic IP addresses

© 2002, Manfred Hauswirth Network Services - Oct 25, 2002 - Lecture 5 49	(1) (1)			
ICOLI POLYTICHNIQUE FOFALE DE LAUXANNIE	(PFL	© 2002, Manfred Hauswirth	Network Services - Oct 25, 2002 - Lecture 5	49
	COLE POLYTECHNIQUE FEDERALE DE LAUSANNE			

P-Grid's Update Algorithm (Pull Phase)

- Scenario 1: If a peer has been off-line it must try to get a consistent view of the data again.
 - p contacts some of its replicas randomly and asks for all updates for the time it had been offline.
- Scenario 2: A peer is online but communication is temporarily disrupted.
 - This is more complicated because the peer may not recognize that its communication with the rest of the P-Grid network is broken.
 - To get around: contact other peers (specifically its replicas) at regular intervals
 - Randomly ping a replica *r_p* from the list of active replicas *R_p*
 - Check whether the ping counter has exceeded its maximum or the the maximum offline period of replica peers has expired.
 - If one of these 2 conditions is true remove *r_p* from *R_p*.
 - If *r_p* becomes online again and requests a state update of or other peers notify the peer that did the unsuccessful ping, then *r_p* is put into *R_p* again.

P-Grid's Update Algorithm (Push Phase)

- p receives an update request update(K, V, p_f, R_f) with K: key of the data to update, V: new value, p_f: requesting peer, R_f replica list of requesting peer
- *p* propagates the update request to *R_p* \ *R_f*
- *p* sends *R_p* \ *R_f* to *f* so that *f* learns about new replicas
- *p* discovers additional replicas from $R_f \setminus R_p$, contacts them and updates its replica list: $R_p = R_p \cup R_f$
- If *R_p* did not change for the last *L* update requests (or time period *T* or self-tuning parameter), then ascend the P-Grid search tree to find new replicas and contact them.
- If a peer *r_p* cannot be contacted then retry:

© 2002 Manfred Hauswirth

- Check whether the ping counter has exceeded its maximum or the the maximum offline period of replica peers has expired.
- If one of these 2 conditions is true remove r_p from R_p.
- If r_p becomes online again and requests a state update of or other peers notify the peer that did the unsuccessful ping, then r_p is put into R_p again.

Network Services - Oct 25, 2002 - Lecture 5

Decentralization: Napster vs. Gnutella

		Napster	Gnutella
Resources	search	central	decentral
Resources	file exchange	decentral	decentral
	schema	central	trivial
Knowledge	annotation	decentral	decentral
		Partially decentralized	Self-Organizing

Why are Schemas Important ?

- Example: Searching biological databases – Without schema (like Google, Gnutella)
- Searching for data on "anglerfish"
 Results will be precise

- This seems easy, but the same for "leech"
 Organism leech
 - Authors: "Bleech", "Leechman", ...
 - Protein sequences: ...MNTSLEECHMPKGD...

53

/////	
(PAL	© 2002, Manfred Hauswirth

Network Services - Oct 25, 2002 - Lecture 5

Translating Heterogeneous Schemas

- A non-expert may be able to relate
 - <Organism> \Leftrightarrow <Species>
 - <Author> \Leftrightarrow <Authors> etC.
- But what about
 - <AaMutType> \Leftrightarrow <DnaMutType>
 - <FtKey> \Leftrightarrow <FtKey>

in Swisschange and EMBLChange ?

• The answers can only be given by the <u>experts</u> ... sometimes only by the <u>data owners</u> !

Approach: ask <u>them</u> to provide <u>their</u> translations from some "known" schema to their "own" schema (local step)

55

Schema Heterogeneity

- Different databases Different schemas
 - SwissProt: Find <species> leech </species>
 - EMBLChange: Find <Organism> leech </Organism>
- Standardization (global schema) ?
 - Music files: clear scope, simple semantics ©
 - Scientific databases: different scope, distributed knowledge, little agreement, etc. \circledast
- Hardest problem in information systems: semantic interoperability

© 2002, Manfred Hauswirth Network

Network Services - Oct 25, 2002 - Lecture 5

54

Local Semantic Interoperability (Translation)

Global Semantic Interoperability

Semantic Kernels

- After a few translations the query returns
- T1(T2(T3(T4(Q))))
- In general: T1(T2(T3(T4(Q)))) != Q
- But there always exists Q' sucht that
- T1(T2(T3(T4(Q'(Q))))) = Q'(Q))
- Therefore an agreement exists on this query !

How to Detect a Semantic Agreement ?

Research Questions

- Many fundamental problems
 - Erroneous agreements
 - Agreement on schema but not on data
 - Complex data types and mappings
 - Overlapping of data collections
- Approach: algorithms and tools
 - to automatically generate, detect and use local translations
 - identify which are correct with a high probability (via semantic kernels)
 - control of global search (via semantic gossiping)

Summary and comparison of P2P approaches

	Paradigm	Search Type	Search Cost (messages)	Autonomy
Gnutella	Breadth-first search on graph	String comparison	$2*\sum_{i=0}^{TTL}C*(C-1)^{i}$	very high
FreeNet	Depth-first search on graph	String comparison	O(Log n) ?	very high
Chord	Implicit binary search trees	Equality	O(Log n)	restricted
CAN	d-dimensional space	Equality	O(d n^(1/d))	high
P-Grid	Binary prefix trees	Prefix	O(Log n)	high

(PA	© 2002, Manfred Hauswirth
ECOLI POLYTECHNIQUE	

Network Services - Oct 25, 2002 - Lecture 5

61

P2P problems: firewalls

Dynamic IP Addresses/Mobility and P2P

- Typically hosts have changing IP addresses
 - Dynamic Host Configuration Protocol (lease time)
 - Host mobility (physical mobility)
- No problem for pull-based P2P systems
 - New peer initiates a "permanent" connection to other peer(s) that route(s) requests to the new peer via this connection (for example, Gnutella).
 - No "permanent" connection \Rightarrow problem
- BIG problem for pushed-based P2P systems
 - Peers actively try to connect via a new connection (for example, P-Grid)
 - What if the IP address has changed in the meantime?
 - Location transparency? Migration transparency?

(PA	© 2002, Manfred Hauswirth	Network Services - Oct 25, 2002 - Lecture 5	62
ERALE DE LAUSANNE			

P2P problems: Network Address Translation

- NAT translates private (non-routable IP) addresses into public (routable) ones
- Unidirectional concept (from Intranets to Internet)
- Bi-directional possible, but difficult and thus usually not configured
- Many protocols are not NAT-friendly: VoIP, RTP, RTCP, IPSec, P-Grid, etc.

Security Threats

• Leakage

- an unauthorized person tries to get hold of information belonging to or intended for somebody else
- Tampering
 - unauthorized alteration (including deletion) of information or programs
- Resource stealing
 - unauthorized use of facilities (such as memory, disk space, or network connections
- Antagonism
 - an interaction with a system takes place which does not result in a gain for the intruder but is annoying (vandalism)

Security - What it means

- Confidentiality
 - prevent unauthorized accesses
 - encryption
- Integrity
 - prevent unauthorized changes
 - message authentication codes (MACs)
- Availability
 - uninterrupted access
 - backup, prevent denial-of-service attacks
- Authenticity
 - prove origin of data
 - digital signatures

© 2002, Manfred Hauswirth

irth Network Services - Oct 25, 2002 - Lecture 5

Security Attacks (1/2)

- Eavesdropping / disclosure of information
 - an unauthorized intruder tries to read information which is sent over a network or is stored in memory
 - difficult to detect since they normally do not leave traces
- Masquerading
 - an intruder tries to use someone else's identity to gain access to the system
- Message tampering
 - unauthorized changes of network messages
- Replaying
 - network packages are stored and resent at a later time

Security Attacks (2/2)

- Denial of service
 - DOS attacks make parts of a system unusable for other (legitimate) users by hogging, damaging, or destroying a resource
- Social engineering
 - an intruder gains access to a system by playing the role of someone else. He/She can try to convince a user to change his password to a given string or act as a system administrator and simply ask for the password for a special reason
- Exploits
 - use security holes in operating systems and software to gain access to a system
- Data driven

(PA E. g2002) Minuses mand	Trojan horses 25, 2002 - Lecture 5
COLL POLYTECHNIQUE	

Firewalls: Part of the Solution

- Isolates a network from the Internet
- Allows certain connections and blocks others
- Firewall ≠ Security !!
 - frequently a substitute for real problem fixing
 - many attacks by frustrated/dishonest employees
 - important but divert attention from real network problems, host vulnerabilities, poor planning, lack of organizational policies

Network Services - Oct 25, 2002 - Lecture 5

⇒ Firewall = ADDITIONAL Security

© 2002, Manfred Hauswirth

69

Firewall Placement (1/3)

Firewall Placement (3/3)

User Safety

- Buggy browsers: more features ⇒ more bugs
- Netscape's server push and client pull ⇒ bandwidth
- Helper applications and browser plugins may create security holes (executable commands)

LYTECHNIQUE DE LAUSANNE

© 2002, Manfred Hauswirth

Network Services - Oct 25, 2002 - Lecture 5

74

Social Engineering (1/2)

- "There is a problem with your account. Please change your password to NowSafe and await further instructions."
- "There is a problem with your account and we are unable to bill your credit card. Please enter your credit card number and expiration date and click the SUBMIT button."
- "We have detected that you are running an outof-date version of this web browser software. Please click on this URL to download a new version of the software, then run the program called SETUP.EXE to install it."

<SCRIPT>

password = prompt("Please enter your dial-up password", ""); </SCRIPT>

Some Browser Flaws

- Predictable random numbers
- Applets can open connections to any host
- Automatically fill user environment info into forms and submit it
- Send hidden email in the name of the user
- Run any program stored on the user's computer

Network Services - Oct 25, 2002 - Lecture 5

• DNS spoofing attacks on applets

JavaScript Security

• DOS attacks

- open new browser or alert windows in a loop
- calculating Fibonacci numbers
- swap space (create large strings in a loop)
- Running scripts cannot be stopped
- Spoofing (official-looking windows)
- Access to browser history
- Automatic sending of emails
- Monitor other browser windows
- Change status line

© 2002, Manfred Hauswirth

Well-trusted Hosts ?

© 2002, Manfred Hauswirth

- WWW.MICROSOFT.COM (O <=> 0)
- MICROSOFT.CO.FI
- www.microsoft.co.../setup.exe (i.e., www.microsoft.com.attacker.org/hacker/setup.ex e)
- ActiveX
 - Authenticode is no solution
 - run any program without a sandbox
 - malicious code ? buggy code ? viruses ?

Privacy

- User-tracking via cookies
- How much is stored in the log files ?
- Does the web server have a published privacy policy ?

Network Services - Oct 25, 2002 - Lecture 5

- eTrust: develop standards for online privacy
- ⇒ Anonymizers

77

Certificates

- Typically based on public key cryptography (RSA, PGP, ...)
- User generates a key pair
 - private key is kept private (diskette, chipcard)
 - public key is registered with a certification authority (CA)
 => certificate
- Certificates are NOT people => certification requires identification
- Many different certificate types (most popular X.509v3)

Public Key Infrastructures

- CA must be trusted
- CA must maintain and clients must check certificate revocation lists (CRLs)
- Communication with the CA must be secure
- CA must digitally sign replies
- How do I get a CA's certificate for my browser ?

82

84

• Cross-certification (chains of trust)

Secure Sockets Layer (SSL)

- SSL defined by Netscape => Transport Layer Security (TLS) Protocol
- Provides authentication and non-repudiation of servers and clients, data confidentiality and data integrity
- Uses separate keys and algorithms for encryption, authentication and data integrity (separation of duties)
- Certificate-based authentication
- Protection against replay and man-in-the-middle
- Protocol agnostic

(0/1		
(PA	© 2002, Manfred Hauswirth	Network Services - Oct 25, 2002 - Lecture 5
DLE POLYTECHNIQUE		

Pretty Good Privacy (PGP)

- Protection for email and files
- Hybrid encryption system
 - RSA (public key) for key management
 - IDEA (symmetric) for bulk encryption of data
- Management and certification of public keys
 - keys never expire
 - compromised key => keyholder must distribute a revocation certificate
 - key validation trough a web of trust: each user can certify any key (key signing parties)
 - public key distribution by key servers, attached to email, on web page, ...

SSL behind the Scenes

Client

Server

- Send ClientHello message (SSL version, ciphers, random data, session id)
- Check server's certificate,generate premaster secret based on the random data) and send it to server (encrypted with server's key)
- Generate master secret out of premaster secret (same series of steps like the server)
- Master secret => generate session keys (symmetric encryption)

- Send ServerHello (SSL version, cipher chosen, random data, session id)
- Send certificate
- Request client certificate (optional) => additional handshake
- Generate master secret out of premaster secret (same series of steps like the client)
- Master secret => generate session keys (symmetric encryption)

© 2002, Manfred Hauswirth

Network Services - Oct 25, 2002 - Lecture 5

86

Electronic Money

- Confidentiality
- Exactly-once semantics (double-spending)
- Scalability (generation, checks, security)
- Anonymity (tracing of purchases)
- Who generates the money ? Who checks its validity ?
- How do I get electronic money ?

Macro- vs. Micropayment

- High security level
- Non-neglectable transaction costs
- T/min low
- Higher amounts

- Limited security level
- Very low transaction costs
- T/min high
- Low amounts (< 1\$)

Secure Electronic Transaction (SET)

- Joint standard of MasterCard and Visa
 - confidential transmission
 - authentication of involved parties
 - integrity of payment instructions
- No US export restrictions
 - strong cryptography but cannot be used to encrypt arbitrary texts

Network Services - Oct 25, 2002 - Lecture 5

SET behind the Scenes

© 2002, Manfred Hauswirth

- SET purchase request has 2 parts
 - one for the merchant, one for the bank
 - → bank does not know about purchased goods, merchant
 has no credit card info

Network Services - Oct 25, 2002 - Lecture 5

Millicent

(Pfl

89

91

- Developed by DEC for small purchases
- Scrip ("digital cash")

© 2002, Manfred Hauswirth

models an account a customer has established with a vendor or a broker

Network Services - Oct 25, 2002 - Lecture 5

- balance is encoded in the scrip with a proof of correctness (digital signature) for the scrip's value
- can be checked locally for correctness (=> no central server !)
- only valid for a specific vendor or broker
- Scrip security levels
 - in the clear
 - private and secure
 - secure without encryption

Millicent Roles

Broker

- buys larger amounts of vendorscrip from many vendors (real-money transaction)
- sells brokerscrip and vendorscrips to customers (on request)

Customer

- buys brokerscrip from a broker (real-money transaction)
- uses brokerscrip to buy vendorscrip for a specific vendor
 => payment at the vendor who issued this vendorscrip

re 5

- has a few of accounts with some brokers

• Vendor

tco

- sells products and accepts its own vendorscrip as payment
- long-lasting accounts with a few brokers

(Pfl	© 2002, Manfred Hauswirth	Network Services - Oct 25, 2002 - Lectu
LE POLYTECHNIQUE BALE DE LAUSANNE		

E-Commerce Problems

- Where/how to pay taxes?
- Money transfer (=> national bank)?
- Customer rights
 - Cancellation?
 - Which laws are applied?
- Legal in one country / illegal in another one?

Payment with Millicent

- Payment
 - customer sends scrip
 - vendor/broker checks validity of scrip
 - if scrip is OK, generates new scrip with reduced balance
 - return reduced scrip as change

© 2002, Manfred Hauswirth Network Services - Oct 25, 2002 - Lecture 5 94

Current Situation

- Unskilled users: Internet = WWW + Email
- Quality of information found/retrieved proportional to knowledge/skills
- On-demand, user-initiated interaction
- Information passively waits for users

A Sample Push Scenario

Why not use

Email (SMTP)

- 1:1 \Rightarrow n recipients: data is duplicated and transmitted n times (disk space, bandwidth)
- Interaction? Security? E-commerce? Mobile Code?
- Usenet News (NNTP)
 - n:m => lots of data that is not needed (full newsfeed \sim 400kBit/s = 2.5GB/day!)
 - Security? Authentication? E-commerce? Mobile Code?

0.0

... or why not use ...

- WWW is "passive"
- WWW + Email
 - Push (email) / pull (WWW)
 - Scalability problems of email
 - Can exploit existing infrastructure
 - Lack of integration
 - Mobile code? Customization and filtering?

(PA	© 2002, Manfred Hauswirth
COLE POLYTECHNIQUE DÉBALE DE LAUSANNE	

Network Services - Oct 25, 2002 - Lecture 5

Broadcasting Strategies

- Multicast limited access
- Client pull robust, simple, scales well, frequency? notification?
- Server push directory of subscribers, scalability (seq.) ?
- Hybrid approaches push/pull mix

Push System Component Model

Comparison (Components)

System	Channel	Broadcaster	Comm. Paradigm	Transport System
Castanet	\checkmark	\checkmark	pull	R, C, P
PointCast	\checkmark	CBF	pull, lim. push	cache
BackWeb	\checkmark	~	pull & push	cache
Webcasting	\checkmark		pull	
WebCanal	\checkmark	~	push	
Intermind	\checkmark		pull	

Comparison (Features)

System	Back- channel	Pushlets	Update Strategy	Filtering	Scalability	Receiver Update	Data Security
Castanet	plugin	~	diff. (byte)		high	\checkmark	high
PointCast		limited	?	limited	low-medium	\checkmark	
BackWeb	~	~	diff. (byte)	~	medium-high		high
Webcasting	external	~	diff. (file)		high	\checkmark	low
WebCanal	R = B	browser	diff. (file)		low-medium		
Intermind	external	browser	?	limited	medium-high		

, j	(PAL	©
lcou	POLYTECHNIQUE	

Network Services - Oct 25, 2002 - Lecture 5

Problems of current Push Systems

- Repeatedly poll broadcaster for updates
- WWW content types, Java, scripting languages
- Not portable: receiver, broadcaster, protocols, etc.
- Scalability problems

2002, Manfred Hauswirth

- Inadequate security
- No support for e-commerce / payment

Some Highlights

- Castanet
 - Java-based
 - Distribution and Replication Protocol (DRP)
- Microsoft Webcasting
 - Channel Definition Format (XML DTD)
- WebCanal
 - Multicast

106

The The MINSTREL Push System

108

Minstrel's Goals

- Active push distribution to large user groups
- Scalability (users, network bandwidth)
 - Off-line receivers
 - Distribution algorithm (network/server load)
 - Caching Infrastructure

© 2002, Manfred Hauswirth

4500

4000

3500

3000

<u></u>*s* 2500

Delay 2000

1500

1000

0

1000

© 2002, Manfred Hauswirth

2000

3000

4000

5000

Ordinal number of receiver

6000

Network Services - Oct 25, 2002 - Lecture 5

7000

8000

9000

100

111

Delay: Minstrel vs. Serial

- Publication of available Channels
- · Authenticity and integrity of information
- Payment methods and business models
- Static and executable content (security !)

Network Services - Oct 25, 2002 - Lecture 5

109

- Serial

Minstrel

Hybrid Broadcasting

Technology Used

- MADP & MRRP: XML over HTTP
- HTTP for Communication Purposes
 - well known and widely deployed
 - secure (SSL)
 - works across Firewalls
 - COTS are available (HTTP Servers)
- XML for Protocol Messages
 - open
 - extensible
 - COTS are available (XML Parsers, DBs)

COLUMENTIAL COLUMENTIA	(PA) © 2002, Manfred Hauswirth		
ECOLI POLYTICHNIQUE FIDIRALE DE LAUSANNE		Network Services - Oct 25, 2002 - Lecture 5	113
	ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE		

Broadcaster Architecture

Minstrel Protocol Messages

xml version="1.0"?	
<sample <br="" sid="k32a5ds64f8sdf9ak4fhf2sf">priority=1> <offer <br="" oid="itu435gf6b3vkjr234ei6gk2c">timestamp="Sat May 13 08:01:21 GMT+02:00 2000" vendorld="bk4sfas34vbdf98jkgiut845j" channelld="bk4sfas34vbdf98jkgiut845j" validFrom="13.05.2000" validTo="14.05.2000" description="Satellite Image for 13.05.200 available" price=0.5 currency="USD"></offer></sample>	
<productinfo <br="" pid="54blk4kgkj459grofbq35yc">name="sat13052000.jpg" version=1.0 /> </productinfo>	
<cargo <br="" cid="jhv5cx143mb62nmk8itu">contentUrl="http://hpp20:8080/Content/Images" /> </cargo>	
© 2002 Manfred Hauswith Natwork Saniras - Oct 25, 2002 - Lecture 5	

Receiver Architecture

(PA

Push Systems vs. Event-based Systems

	Push Systems	Event-based Systems
Purpose	timely data distribution	event notification
Participant roles	asymmetric	symmetric
Advertisement policy	simple advertisement (channel)	expressive advertisement language
Subscription policy	simple subscription (channel)	expressive subscription language
Frequency of events	low to medium	high
Number of events	low to medium	high
Payload size	large	small
P/C interconnection	static channels & static producers	dynamic binding to producers
Event grouping	channel	event patterns
Filtering	reduce data transmission req.	reduce number of events

Network Services - Oct 25, 2002 - Lecture 5

Pushing a dead Horse ?

- 1996: big media hype
- 1999: renaissance
- EU projects (IST program)
 - OPELIX (An Open Personalized Electronic Information Commerce System)
 - MOTION (MObile Teamwork Infrastructure for Organisations Networking)

© 2002, Manfred Hauswirth Network Services - Oct 25, 2002 - Lecture 5

118

Ahead

Exam

-18.12.2002

© 2002, Manfred Hauswirth

- Room? \Rightarrow Check website
- Time? ⇒ Check website
- Closed book

GOOD LUCK !

119